
View Synthesis via Sculpted Neural Points

Julien Gaubil, julien.gaubil@ens-paris-saclay.fr
M2 MVA, ENS Paris-Saclay

NPM3D 2022-2023 – Project Report

1. Introduction
The article View Synthesis via Sculpted Neural Points [7] tack-

les the problem of view synthesis. This consists in generating ob-
servations of a scene from unseen view points given input images
of the scene from different view points. It uses a Point-Cloud
based approach: unlike many recent works on Neural Radiance
Fields (NeRFs) [5] that use an implicit representation of the scene,
this work uses an explicit representation that is a Point Cloud. This
point cloud is then featurized to enable rendering.

In NeRF-based approaches, a set of 3D points is generated by
marching camera rays through the scene. These locations, along
with view directions, are then provided to a neural network that
outputs colors and volume density. Volume rendering is then
applied to these points and their predicted colors and volume
densities to render the scene. It accumulates the color and volume
density along a ray to render a pixel. Such a process is computa-
tionally costly since it requires a lot of points to render an image,
while the 3D space is mostly unoccupied. Using an explicit point
cloud representation enables to be computationally more efficient
by only considering points that are close to the actual surfaces. It
also enables fine-grained scene editing, which is hard with NeRFs.

In this project, we will study the Sculpted Neural Points ap-
proach proposed in [7]. We will first describe it and then evaluate
by performing experiments and ablations. Finally, we will discuss
the limits identified through our study and will point out potential
improvements.

2. Sculpted Neural Points
Notations: A set of elements {a1, ..., an} will be denoted as a1:n
for simplicity.

Overview The approach consists in creating a point cloud rep-
resentation of the scene from a set of M images I1:M via a Multi-
View Stereo System (MVS). The MVS however produces a lot
of errors. To correct such errors, this work adopts a two-step ap-
proach that is called Sculpted Neural Points. First, points are re-
moved in a step of point pruning according to a photometric con-
sistency criterion. This first step can result in large holes created
in the point cloud. To overcome this issue, a second step of point
adding is used, that adds points that will help improving the ren-
dering of the point cloud in a global way that enables to fill impor-
tant holes. This approach enables to increase the robustness of the
representation to errors and large holes.

The Point Cloud obtained is then featurized and its features are
optimized by gradient descent to minimize a rendering loss. The
rendering is point-based, executed in a differentiable way.

MVS System The MVS system used is CER-MVS [3]. It pre-
dicts depth maps for every input image I1:M and then merges them
in a fusion step to create the point cloud. Its original version uses
a geometric consistency check, Dynamic Consistency Checking
[6] to eliminate outliers. SNP however uses the raw depth maps
and imposes its own consistency criterion that is photometric and
therefore more suitable to the downstream task.

Point pruning During the point pruning task, points are re-
moved by imposing a photometric consistency criterion. Its in-
tuition consists in keeping a point if it is not significantly closer
to any of the source views than the original surface. Let Π be the
projection that maps a 3D point P and the parameters of a camera
C to the corresponding pixel p in this view, and Π−1 be the map-
ping between a pixel p, its depth dp, the camera parameters of the
view C and to its corresponding 3D point P . A pixel p from the
depth map of the source view i is kept if the following condition
is met:

M⋂
m=1

(
Dm(Π−1(p, dip, C

i)) ≥ δd.d
m
q

)
(1)

where Π−1(p, dip, C
i) is the 3D point with depth dip in view i

predicted by the MVS corresponding to the pixel p. Dm is the
depth (i.e. third coordinate) of this 3D point in the referential of
the view m, q its corresponding pixel in the view m and djq the
depth predicted by the MVS for q in the depth map of the view m.
δd is an hyperparameter that handles the tolerance of the criterion.

This enables to filter points floating freely between the cameras
and the surface, and can keep points that are seen only in a limited
number of views, which is important since the number of source
views M is relatively low.

Features and rendering The point cloud is featurized i.e. a
learnable feature fp ∈ RD and a learnable opacity parameter
op ∈ R are attached to every point p. Given a view v to synthetize,
these features are transformed by spherical harmonics of degree
2 that modelize view-dependant effects. The spherical harmonics
features of every points are then converted into a 2D feature map
by soft-rasterization [2] that mixes the features of points aligned
on a same ray by weighting them with their depth and opacity. The
2D feature map is then fed to a U-Net to generate the RGB image
for the view v. The whole pipeline is differentiable and parame-
terized.

Point adding The goal of the point adding step is to find a set of
points X such that after optimising the features of the point cloud:
PC = PCpruned ∪ X , the photometric error decreases compared

1

to only optimizing on PCpruned. This procedure is done in two
steps:

1. The features of the pruned point cloud PCpruned are op-
timized with gradient descent with a rendering loss: L =∑M

m=1

(
∥Im − Irenderm ∥1 + TV (Irenderm)

)
penalized with a

total variation penalty to help generalizing to novel views.
After optimization, an error map Em = |Im − Irenderm | can
then be obtained for each source view m.

2. For each view m, if a pixel of index (u, v) has an error
Em(u, v) ≥ δ (δ being a fixed threshold) K points are sam-
pled uniformly on the camera-pixel ray through the scene.
Only the points that do not occlude any of the points of
PCpruned in any view are kept.

The features of the point cloud obtained with these additional
points are then optimized with the same objective as in step 1
to render the source images I1:M . The point cloud obtained af-
ter adding points can therefore be a superset of the original point
cloud, since its features are further optimized.

Technical tricks SNP uses a few technical tricks that enable to
boost its performances. First, they introduce point dropout lay-
ers in order to boost the generalization capacities of the model.
Second, they remove Batch Normalizations in the U-Net that are
useless in this case of small number of images.

3. Experiments
We will evaluate the training procedure on three different se-

tups: the first does not use point adding and point pruning, the
second only uses point pruning and the last uses both. We use
the same training settings as the default Sculpted Neural Points
[7]: the optimizer AdamW with a learning rate of 0.00025, a point
dropout rate of 0.5 and two a two-layer U-Net.

We perform experimentations on datasets DTU [1] and LLFF
[4] datasets and evaluate our results with metrics PSNR, SSIM and
LPIPS. We train SNP from scratch on a scene of LLFF, performing
5000 steps for optimization of features for point adding and 50
000 steps for optimizing features for the final training. We train
our models on a single Nvidia V100, which lasts around 12 hours
in total training time.

3.1. Results

3.1.1 Point Cloud visualization

We first start by visualizing the effects of the point sculpting pro-
cedure on point cloud reconstructed from the depth maps from the
MVS. To do so, we use a scene of the dataset DTU (the scan 24)
that contains a single object with a close surface, which enables
to see better the effect of the procedure on the point cloud. We
evaluate the following settings:

• point cloud created from the depth maps obtained from the
MVS that are not refined by any consistency check (neither
DCC, used in [3] nor point pruning) and no point adding is
performed: 6 479 996 points,

• point cloud created after performing point pruning only:
4 411 851 points,

• point cloud created using point pruning and point adding:
4 546 223 points.

We first compare the point pruning procedure with the raw
point cloud to visualize the points removed, figure 1;

Figure 1: Free outlier points removed by point pruning (right)
compared to raw point cloud (left).

We can observe that the point pruning indeed enabled to
remove outliers points created by the MVS system. These points
(in black on the right part of the left image) were floating freely
between the surface and camera views and were accurately
removed from the point cloud without loosing details on the
surface. This illustrates the capacity of the consistency check that
relies on the criterion 1 to remove such outliers.

The source views in the training set only cover a part of the
architecture, which leads to an open surface representation, almost
half of the object not being displayed in any views. The figure 2
details the effect of point pruning on a zone with low point density
corresponding to parts of the object present in few views:

The right part of the images represents a zone of the scene
that is seen in very few views, at the limit of the unseen parts of
the object. This implies a low point density on this part of the
scene, which could lead to these points being treated as outlier
points freely floating between the cameras and the surface. This
example shows that the criterion defined indeed enables to keep
these points in the pruned point cloud. There are indeed very
few qualitative differences in this low density zone between the
pruned and the raw point cloud.

Finally, we compare the pruned point cloud and the pruned
point cloud with point adding to visualize (in red) the zones where
points are added, figure 3:

Although no significant hole has been created by point prun-
ing, the structure of the point cloud is still incomplete due to miss-
ing parts of the scene in the training views. The points added on
this figure show that the point adding procedure focuses on these
parts of the scene by adding points that fill the inside of the struc-
ture. This example is interesting since these points are not really
removed from the actual surface by the point pruning procedure.

2

Figure 2: Pruning procedure (right) keeps points that are seen in
few source views in the training images compared to raw point
cloud (left).

Figure 3: Points added in unseen zones after pruning in red (left)
compared to pruned point cloud (right).

The point adding procedure here plays another role that is filling
the missing parts of the representation. Although it can be counter-
balanced by the following optimization of the features attached to

each point, we can therefore wonder to which extent point adding
brings hallucinations of unseen parts of the scene.

3.1.2 Entire training

We now evaluate the point adding method on a scene from LLFF
dataset that contains more variability in lightning and more ob-
jects than DTU scenes. We first evaluate the same setups as in
the quantitative section: raw point clouds, point pruning and point
pruning + point adding. We stress out that due to lack of com-
putation ressources, we were able to perform experiments on a
single scene only, while training on different scenes would have
been interesting to have an exhaustive evaluation of the model on
different conditions. We presentthe quantitative results for these
different setups table 1:

Point sculpting method SSIM ↑ LPIPS ↓ PSNR ↑
Raw 0.847 0.248 25.85

Point Pruning 0.852 0.245 26.09
Point Pruning+Adding 0.852 0.247 26.13

Table 1: Quantitative evaluation on View Synthesis on scan Horns
of dataset LLFF.

This table shows that on this specific scene, the effect of point
adding and point pruning are almost negligible on quantitative
metrics. Similarly to results reported in the original article [7], we
find non-significant differences between sculpting pipeline using
only point pruning and using pruning + adding. However, unlike
the results of the article, we do not observe a significant improve-
ment when adding the point pruning consistency check over using
the raw depth maps. These quantitative results are coherent with
the view synthesis results displayed figure 4. Visualizing the point
clouds for this example shows that the removed outliers using
point pruning are mostly noisy envelops of the surfaces on the
scene, which can be further corrected by feature optimization.
This could explain the lack of difference between the two setups
in both quantitative and qualitative evaluation when training from
scratch. Another possible explanation for this lack of difference
would be the use of Point Dropout that would enable to correct
the use of these outliers for rendering when using the raw depth
maps.

Other claims from the paper are supported by our experiments.
First, non-Lambertian effects are displayed on the view synthesis
figure 4, which authors attribute to the use of Spherical Harmonic
functions. We also measure a total rendering time around 0.2s
for a single image, which is on par with the 5 FPS inference time
presented by the authors.

4. Discussion
From our experiments, it seems that the raw depth maps

inferred by the Multi-View Stereo System are good enough to
be directly used without further refining. The examples of point
clouds displayed illustrate this behaviour by showing that point
pruning does not automatically creates holes on point clouds.
It also shows that in the case of scans with unseen parts of the

3

Figure 4: View synthesis on Horns scan of LLFF dataset, achieving almost similar results for sculpting pipeline using raw depth maps and
SNP sculpting pipeline.

scenes, the point adding step can hallucinate points in the empty
unseen zones instead of covering points removal due to pruning on
the actual surfaces. This behaviour is useless for view synthesis
and can even translate into hallucinations. A simplified pipeline
without Point Sculpting and point adding could therefore be used,
which would both save training time and hyperparameters tuning.

Authors also state a limitation of this approach that lies in
the explicit point cloud representation: the model is unable to
deal with scenes with background textures that are arbitrarily
far away from the camera (e.g. sky). A solution could be to
explicitly model the background in the point cloud representation
by sampling points on a sphere that contains the whole scene.
This could enable to have a background model and to model
objects at the infinite, but would in turn probably increase by a
significant factor the number of parameters, which could slow
down inference and training.

Finally, authors highlight the lack of 3D consistency of their
method that is due to the hallucinations of the U-Net. This results
in flickering effects that are visible on the videos in the Github as-
sociated to the code for this project. They leave as a future work
to remove this dependency to a 2D generator, which would prob-
ably require to use a different rendering pipeline and would imply
important changes in the architecture.

5. Conclusion

Our experiments enabled to confirm interesting properties of
the point-based view synthesis model Sculpted Neural Points, such
as the efficiency of the point pruning procedure to remove outliers
produced by the MVS system, or the capture of non-Lambertian
effects. However, they did not demonstrate the effects of one of the
main mechanisms of the approach, that is sculpting neural points.
Using this procedure indeed did not translate into significant im-
provements on the specific scene on which we have been able to
perform our experiments.

References
[1] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and

Henrik Aanæs. Large scale multi-view stereopsis evaluation. In
2014 IEEE Conference on Computer Vision and Pattern Recognition,
pages 406–413, 2014. 2

[2] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient sphere-
based neural rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 1440–
1449, June 2021. 1

[3] Zeyu Ma, Zachary Teed, and Jia Deng. Multiview stereo with cas-
caded epipolar raft. In Proceedings of the European conference on
computer vision (ECCV), 2022. 1, 2

[4] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek
Kar. Local light field fusion: Practical view synthesis with prescrip-
tive sampling guidelines. ACM Trans. Graph., 38(4), jul 2019. 2

[5] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.
Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes
as neural radiance fields for view synthesis. In ECCV, 2020. 1

[6] Jianfeng Yan, Zizhuang Wei, Hongwei Yi, Mingyu Ding, Runze
Zhang, Yisong Chen, Guoping Wang, and Yu-Wing Tai. Dense hy-
brid recurrent multi-view stereo net with dynamic consistency check-
ing. In ECCV, 2020. 1

[7] Yiming Zuo and Jia Deng. View synthesis with sculpted neural
points. arXiv preprint arXiv:2205.05869, 2022. 1, 2, 3

4

