
Weakly-supervised text-line analysis & Writing style modelling

Julien Gaubil, julien.gaubil@ens-paris-saclay.fr
M2 MVA, ENS Paris-Saclay

Deep Learning 2022-2023 – Project Report

Abstract

The use of Deep Learning models for Handwritten Text Recog-
nition (HTR) applications led to progress in the automatic analy-
sis of such documents. Some open research directions are how-
ever still opened, since advanced DL models often lack of ex-
plainability, yielding results that are hard to interpret. Despite
these recent progress, these models also struggle with datasets that
contain challenging handwritings such as historical documents,
where there is an important variability in the aspect of the char-
acters. This project aims at developing interpretable Deep Learn-
ing methods that could perform a detailed analysis of challenging
handwritten documents. It builds on an existing method generative
approach, the Learnable Typewriter [15] that performs character
analysis and recognition in images of text lines in an interpretable
way using little to no supervision. This document-specific ap-
proach performs multi-object segmentation by reconstructing in-
put text lines using automatically extracted visual elements called
sprites. The Learnable Typewriter however struggles at modelling
different handwriting styles in a single dataset, and struggles at
modelling characters that have different representations. Such as-
pects have important applications in paleography that is the study
of ancient writings. In this project, we present two modifications of
the original architecture that enable to improve its performances
on these tasks, which we further demonstrate by an evaluation on
the challenging handwritten dataset Alto-word [18] extracted from
medieval manuscripts.

1. Introduction
1.1. Context and existing work

Context The purpose of this project is to develop Deep Learning
methods that use little to no supervision for text recognition and
handwriting analysis in images in an interpretable way on chal-
lenging handwritings. It follows an internship at ENPC under the
supervision of Pr. Mathieu Aubry that was part of a collaboration
with historians for automatic data analysis for paleography, that is
the study of ancient writings.

Text recognition and handwriting analysis in images is chal-
lenging due to the high variability in the aspect of a same handwrit-
ten character. Interpretability is often seen as a major bottleneck
of Deep Learning methods whose inference process is described
as ”black box”.

The Learnable Typewriter This project builds on the existing
model The Learnable Typewriter (LTW) [15] that was developed
during the internship in collaboration with Pr. Aubry’s group. This

Figure 1: Overview of the Learnable Typewriter. Source [15].

Figure 2: Results on the ciphered dataset Copiale [8]. An input
text line (top) is reconstructed by transforming and placing auto-
matically extracted characters (bottom), which enables a recon-
struction segmented by character (middle). Source [15].

Deep Learning model performs character analysis and reconstruc-
tion in images of text lines with the purpose of dealing with chal-
lenging handwritten documents while being interpretable. Specif-
ically, it builds on unsupervised multi-object segmentation ap-
proaches [13, 16] that learn a set of image prototypes called sprites
to reconstruct the images. The LTW jointly extracts recurrent sym-
bols (i.e. characters) from the dataset while training a network to
reconstruct the input images of text lines by transforming and po-
sitioning the extracted characters on a background canvas. This
process is illustrated figure 1. This approach is document-specific
in the sense that the model is trained on a given set of documents
and does not aim at generalizing at documents that are out of the
scope of the corpus.

The model can perform in an unsupervised way, or can be
guided by a widely available weak supervision, that are the tran-
scriptions of the text lines. Intuitively, knowing the sequence of
characters in a text line can indeed guide the selection of of the
extracted characters to use to reconstruct the text lines.

1

Advantages and applications The Learnable Typewriter meets
enables analysis of the text line images at the character level
while being interpretable. Using the characters extracted from the
dataset by transforming them and placing them indeed allows to
know exactly which letter have been used to reconstruct a given
text line. This is particularly useful in the case where there is an
ambiguity on which sprite is used to reconstruct a character. It can
also explain the bad reconstruction of a character, for instance if
it has not been detected and modelled in the sprites. The model
may then try to mix several extracted characters to reconstruct it,
leading to a bad reconstruction. It is totally transparent on those
predictions by offering an easy access to the sequence of trans-
formed sprites used to reconstruct a text line, which enables to
understand failure cases.

The combination of extracted characters and segmented recon-
struction represented figure 2 enables an automatic analysis of the
dataset as a whole through the study of the sprites. It also allows
analysis at the character scale by the study of the reconstructions
of text lines. To do so, it can perform in a fully unsupervised way
or in a weakly-supervised way that requires limited annotations
since transcriptions of the documents can often reasonably be ob-
tained. In this setting, that we use for the project, it does not need
a knowledge of the language (see figure 2 with the ciphered docu-
ment), it only needs the sequence of characters.

1.2. Problem description

The existing model developed faces limitations on challenging
handwritten datasets.

Variability of character representation First, such datasets
from historical documents can have a lot of variability in the rep-
resentation of a same character. A same character in the transcrip-
tions can have several version in the dataset, as shown figure 3:

Figure 3: Two representations of the character ’d’ in the dataset
Alto-word [18].

This leads to difficulties in the weakly-supervised case where
we use a single sprite to model a given character. This means
that a single sprite has to learn the different representations of a
character and average them, which leads to noisy sprites and bad
reconstructions. Rarest representations can even not be captured
in the sprites, leading to the use of the right sprite with the wrong
appearance to reconstruct a this character.

Variability in the writing style Another challenging case is the
case of historical documents with different handwritings. Figure
4 illustrates this case. In these samples, the last ’t’ has the same
representation in both samples but still displays a different aspect
due to different writing styles. The learned sprite however does

not encode the style of the sample on the right. In both cases, the
reconstructed sprite after transformation is similar to the learned
sprite, since transformations can only modify colour and scale.
The reconstructed character is therefore exactly the same in both
cases despite the difference in the aspect of these ’t’ in the original
image.

Figure 4: Samples from the dataset Alto-word [18] with two dif-
ferent writing styles. First line represents the original text line,
second line the reconstructed text line using the learned sprite ’t’.
The third line is a segmentation per character of the reconstruction.

We would like to be able to transform the learned sprites in
a way that enables to adapt to each writing style. This could be
useful to have a better reconstruction, but also to have characterise
the transformations used to model a given handwriting. Having
an automatic analysis of the handwriting style would be useful for
historians in paleography, which was the first motivation of the
project.

This could also lead to better results on challenging irregular
handwritings. Being able to transform sprites in a refined manner
could enable to adapt to each occurrence of a character, even if
they have the same writing style.

1.3. Outline and contributions

To sum up, our contributions for this project are:

• contribution to the last developments of the Learnable Type-
writer [15] for publication and submission at CVPR’23. Con-
tribution to the writing of the submission,

• a generalization of the use of more than one sprite per char-
acter, which we demonstrate to effectively model different
representations of the same character,

• an augmentation of the transformation pipeline to better
model the different handwriting styles,

• an evaluation of the aforementioned modifications on the
challenging handwritten dataset Alto-word [18] and its sub-
sets.

After a literature review, we detail the architecture of the Learn-
able Typewriter on which we build. We will also present our mod-
ifications in the ’Methodology’ section, and then evaluate them in
the ’Experiment’ section.

The implementations as part of this project can be found at:
https://github.com/JulienGaubil/MVA/tree/main/Deep-Learning.

2

https://github.com/JulienGaubil/MVA/tree/main/Deep-Learning

2. Related works

Text recognition The tasks of Optical Character Recognition
(OCR) and Handwritten Text Recognition (HTR) have been
amongst the first to demonstrate successful applications of Deep
Learning models [9, 10]. More recently, discriminative ap-
proaches that use a Convolutionnal encoder followed by Bidirec-
tionnal LSTM trained with the Connectionnist Temporal Classifi-
cation (CTC) loss have been proposed [1, 2]. This CTC loss [4]
aligns unsegmented inputs with their label and has important ap-
plications at the intersection of Computer Vision and Sequence
Learning. One of the first applications to HTR has been demon-
strated in [5] by training Multidimensional Recurrent Neural Net-
works with this loss function as an objective.

Closer to the approach of the Learnable Typewriter are ap-
proaches that use a set of handcrafted image prototypes/sprites to
perform matching in the input text lines [17, 19]. ScrabbleGAN
[3] also uses a Generative approachto synthetize handwritten text
images with specific writing styles in a semi-supervised way. It
however doesn’t enable an analysis at the character level.

Sprite-based unsupervised image decomposition The Learn-
able Typewriter is built over two different lines of work that learn
to model object in images with sprites, namely MarioNette [16]
and DTI-Sprites [13]. These two approaches decomposes images
in prototypes of objects called sprites, that are modeled by RGB
images with an additional transparency channel. DTI-sprites di-
rectly learns sprites in the image space while MarioNette learns
sprites in a latent space and train a generator to generate the RGBA
sprites from the latent sprites. Both methods then use simple trans-
formations to adapt the learned sprite to each specific instance of
object in the image. To do so, they predict the parameters of pa-
rameterized transformations applied in a differentiable way by a
Spatial Transformer Network [7]. The transformation pipeline is
quite simple, but more complex transformations are used in [12]
on which is based DTI-Sprites.

3. Methodology

3.1. The Learnable Typewriter

In this subsection, we will describe the model Learnable Type-
writer [15] that was developed as part of the internship and at the
beginning of this project for the CVPR submission. A set of ele-
ments {a1, ..., an} will be denoted as a1:n for simplicity.

Description The purpose of the Learnable Typewriter is, given a
dataset of images of text lines, to learn the shape of the characters
contained in the text lines and to learn a Deep Neural Network that
can predict the transformations to apply to these learned characters
to generate a given input text line. It is therefore a generative anal-
ysis by synthesis approach, that uses unsupervised image decom-
position to jointly learn a representation of the characters called
sprites, and the network. Specifically, the network learns both to
predict transformations to apply to the learned sprites and how to
position them on a background canvas to reconstruct the input text
lines. Although it can be trained in an unsupervised way, we will

introduce the weakly-supervised training that uses the transcrip-
tions of the text lines as a supervision to guide the reconstruction.

Overview An input image of text line of size H × W is fed to
a CNN encoder that outputs T feature vectors f1:T associated to
uniformly spaced locations in the original image. The feature vec-
tors are then fed to the Typewriter module, described below, that
outputs T canvas o1:T of size H × W of transformed sprites po-
sitioned accordingly to the uniformly spaced locations, see figure
5a. The features are also fed to a network bθ that uses the average
feature vector to predict a single color for the opaque (0 trans-
parency channel) background canvas oT+1. The ordered layers
o1:T+1 are then merged using alpha-composition (see below) to
form the reconstructed image x̂. The image is iteratively defined
by the following alpha-composition rule:

x̂t = oαt ot + (1− oαt) x̂t−1 ∀1 ≤ t ≤ T (1)

where oα denotes the transparency channel of a layer o, and
the initialization x̂0 = oT+1. The final reconstruction is x̂ = x̂T .
This equation shows that, at a given step t, the RGB channels of
the layer ot are masked by the transparency mask oαt while already
composed layers j < t are masked by the complementary trans-
parency mask 1− oαt to obtain the reconstruction x̂t at step t.

Sprites In the weakly-supervised case in which we set, we have
access to the transcriptions of the images i.e. to the set of K char-
acters in the dataset. We can therefore initialize exactly K sprites
and set an explicit matching between sprites and characters. The
Learnable Typewriter contains K sprites z1:K that are learned la-
tent codes. An U-Net generator gθ takes as an input latent sprite zk
and generates the transparency channel of an image sk = gθ(zk).
Along with an uniform color for the channel RGB, it will model a
character. An empty sprite zK+1 is added to model the case where
we don’t want to place a sprite on a given canvas/layer.

Typewriter Module We now describe the Typewriter module
with a given feature vector ft as input. It outputs a canvas ot that
is a RGB image of size H × W with an additional transparency
channel. This module is represented figure 5b. The latent sprites
z1:K are projected in a feature space by learned projection lay-
ers pθ, which gives pθ(z1:K) ∈ RD×K . A sprite zK+1 is added
to model the blank sprite in the feature space. The feature vec-
tor ft is projected in the same feature space by learned projection
layers, πθ. Once in the same space, the similarity between the fea-
ture vector ft and each of the latent sprites z1:K+1 is computed
by performing a dot product. After normalization, probabilities
p1:K+1(ft) over sprites are obtained by applying a softmax to the
computed similarities. The overall operation is described below:

p1:K+1(ft) = softmax
(1√

D
pθ(z1:K+1) . πθ(ft)

)
∈ RK+1 (2)

A weighted sprite s is then obtained by weighting the sprites
z1:K+1 (including the blank sprite K+1) with the computed prob-
abilities p1:K+1(f): s =

∑
k pksk. A network tθ then predicts the

parameters of a parameterized transformation to be applied to the

3

(a) Overall pipeline of The Learnable Typewriter. Source [15].

(b) The Typewriter Module. Source [15].

sprite s. tθ takes as an input the feature vector ft and outputs pa-
rameters βt ∈ R6. Two of these parameters define a spatial trans-
lation that enable a refined positioning for the sprite s in the canvas
ot: a coarse positioning is defined by a window in the canvas po-
sitioned at the position attached to the canvas t. The predicted
translation defines the position of the sprite s inside this window,
refining its position to match exactly the position of a character in
the input text line. One parameter is dedicated to scaling, and the
last three parameters adapt the color of the sprite. These param-
eters βt, as well as the sprite s are then fed to a transformation
module (Spatial Transformer Network [7]) that outputs the canvas
ot. This canvas contains the sprite s transformed and positioned
according to the prediction. The whole pipeline is differentiable
and enables to train the model end-to-end.

Losses The loss used in the weakly-supervised setting (when
using the transcriptions of the text lines) is composed of two
terms. The first term is a reconstruction loss between the in-
put images x and the reconstructed images x̂. It pushes the the
model to transform and place the sprites well to reconstruct the
input text lines, and pushes sprites to model the characters in the
dataset. The second term is the Connectionist Temporal Classifica-
tion loss [4] that incorporates the weak supervision (transcriptions
Y) in the training process by pushing the predicted probabilities
P = p1:K+1(f1:T) to match the sequence of characters in the tran-
scription. This enables to ensure that the sprite sequence matches
the transcription sequence.

In the weakly supervised setting, we initialize one sprite per
character with an explicit matching between them, and we use the
blank sprite zK+1 as the separator for the CTC loss. The CTC loss
pushes a sprite to effectively capture its associated character. The
total loss is presented above, λ being an hyperparameter.

L(x, x̂, P, Y) = ∥x− x̂∥22 + λ LCTC(P, Y) (3)

3.2. Two sprites per character

The first problem that motivated this project was to model the
different representations of a single character, see figure 3. A sim-
ple approach to solve this problem is to use more than one sprite
per character. In this subsection, we describe how to use two
sprites per character, which can be easily generalized to N > 2
sprites per character.

Formally, we now have z2:2K+1 sprites, and the sprites z2k
and z2k+1 are associated to the k-th character. We still use
the blank sprite, z2K+2. Similarly to the original Learnable
Typewriter, given an input feature ft, the Typewriter module
predicts probabilities for each sprites p2:2K+1(ft), see equation
2. As represented figure 6, we then sum the probabilities p2k and
p2k+1 associated to a same character to obtain a single probability
per character, p̃1:K+1(ft), p̃k = p2k + p2k+1 ∀1 ≤ k ≤ K.
The probabilities p̃1:K+1(ft) can then be used in the CTC loss
along with the transcriptions as in the original architecture. The
weighted sprite s obtained will be the weighted sum of all the
sprites, s =

∑2K+2
k=2 pksk.

Using this sum of probabilities naturally enables to have
a gradient backpropagated from the CTC loss to the latent
sprites in the same way as in the original Learnable Typewriter.
Indeed, the gradient is backpropagated from the CTC loss to the
probabilities p̃1:K+1(ft). After backpropagating the gradient
from the probabilities p̃1:K+1(ft) to the probabilities p2:2K+1(ft)
through the sum, the gradient can then be backpropagated to the
sprites and the probabilities prediction network in the same way
as the original Learnable Typewriter. An alternative solution
that would consist in using a hard selection by only selecting the
sprite that has the highest probability for each character (both for
the CTC loss and the reconstruction) would lead to sprites never
being selected, therefore never receiving gradient and being left
non-optimized.

4

Figure 6: Modification of the Typewriter module using two sprites
per character.

This method also has the advantage of being easily adaptable to
the case with N > 2 sprites per character. It indeed only needs to
sum through all the N predicted probabilities for a single character
before the CTC loss, as represented in figure 6 for the case N = 2.

3.3. Adding transformations

The second problem was to model the transformations that
characterize a handwriting style, and to have a transformation
pipeline that enables to adapt to irregular handwritings. The trans-
formation pipeline of the original Learnable Typewriter, repre-
sented on the top of the figure 7, only modifies the position and
the scale of the sprite. It is therefore not able to achieve this task.
The idea is to add transformations able to model such variability
to the transformation pipeline. To do so, similar to [12], we add a
Thin Plate Spline transformation at the end of the pipeline (see the
bottom part of figure 7).

Figure 7: Original transformation pipeline (top) and augmented
transformation pipeline (bottom).

The Thin Plate Splite is a data interpolation and smoothing
method. In the 2D case, it uses K control points (xk, yk)1:K , usu-
ally sampled in a grid in the image and interpolates exactly through
these points while minimizing a regularization energy that is de-

fined as the squares of the second derivatives:

I[f(x, y)] =

K∑
k=1

∥(xk, yk)− (x, y)∥2

+

∫
R2

[(
∂2f

∂x2

)2

+

(
∂2f

∂y2

)2

+ 2

(
∂2f

∂x∂y

)2
]
dxdy

In 2D, a Thin Plate Spline is often interpreted as the dis-
placement of one of the coordinates (x or y) of the image plane.
We therefore need two Thin Plate Splines fx, fy to have a
2D coordinate transformation/warping that will be defined by
(x′, y′) = (fx(x, y), fy(x, y)) ∈ R2.

The closed-form solution of the previous equation in 2D has
the following form:

f(x, y) = a1 + axx+ ayy +

N∑
k=1

wk U (∥(x, y)− (xk, yk)∥2)

where U is the radial basis kernel U(r) = r2log(r), w1:K is a
set of mapping coefficients, and the coefficients (a1, ax, ay) rep-
resent the linear plane that best approximates the mapped points
f(xk, yk). Each TPS has K + 3 parameters: the w1:K and the
a1, ax, ay . A TPS transformation/warping is therefore defined by
2(K + 3) parameters. Similar to the Learnable Typewriter, these
parameters will be predicted by the predictor tθ from the features
f1:T .

4. Experiments
4.1. Implementation and training details

We evaluate our approach on the dataset Alto-word with lines
of height H = 64, and sprites of size H/2 × H/2. We compare
ourselves to the original method only (for comparison with other
methods, see [15]). In the default weakly-supervised setting, we
use as many sprites as characters in the dataset. We use the same
training settings as the default Learnable Typewriter [15]: the op-
timizer AdamW [11] with a learning rate of 10−4 (with a weight-
decay of 10−6 for the encoder). Similarly, the encoder eθ used
is a truncated ResNet-32 [6], and the generator is a U-Net [14].
The projection layers pθ, πθ are simple linear layers with layer
normalization. The networks bθ, pθ used to predict the transfor-
mation parameters are 2-layers MLPs. On the full Alto-word, we
train during 200 epochs with a batch size of 16.

For transformations, we adopt the same curriculum learning
strategy as in [12] by iteratively training the network until con-
vergence before adding another transformation to the pipeline and
then keep training with the new pipeline. We train our models on
a single GPU GTX 1080. The training time for 200 epochs with
a batch size of 16 on Alto-word for the original architecture is
around 8 hours.

4.2. Datasets & Metrics

Dataset Alto-word The dataset Alto-word [18] comes from 101
digitized images of dated medieval manuscripts and contains an-
notations at the word level. Each original image corresponds to a

5

single document that typically contains between 6 and 25 lines of
text. The dataset contains a total of 12927 images of words seg-
mented manually along with their transcription. The transcriptions
include 99 different characters. Annotations also detail the writing
style for each word, the three most common writing styles being
Textualis, Praegothica and Humanistique. We create subsets for
these writing styles to reduce the variability in the writing in these
subsets. Alto-word is challenging due to an important variability
inter and intra-handwriting styles. It also exhibits degradation, and
characters from other lines can appear on the images.

Metrics We evaluate our models with the Character Error Rate
metric. This metric counts the number of modifications required
to transform a predicted sequence into a ground-truth sequence.
Formally, it is defined as:

CER(s, ŝ) =
S +D + I

|s|
(4)

where S is the number of substitutions, D is the number of
deletions and I is the number of insertions required to match the
ground-truth sequence ŝ. In our experiments, at every position in
the image, the sprite that has the highest predicted probability will
be selected. The sequence of predicted sprites obtained can then
be translated in a sequence of predicted characters thanks to the
explicit matching between sprites and characters. The CER will
be applied to this sequence of predicted characters and will use
the ground-truth transcription as the ground-truth sequence. The
lower is the CER, the better is the model on this metric. Please
note that although this metric is useful to evaluate the LTW and
compare it to other models, generalizing on a test set and improv-
ing the CER is not the main purpose of the model.

4.3. Results

4.3.1 Experiments with two sprites per character

We first experiment the architecture using two sprites per char-
acter by training on the dataset Alto-word with this architecture
and comparing to the baseline, the original LTW. The impact of
this modification in terms of size of the model is negligible since
the baseline contains 99 sprites and 3.863 millions parameters
against 198 sprites and 3.964 millions parameters for the archi-
tecture when using two sprites per character. This has also lit-
tle impact on the training time, 7h18min for the baseline against
7h38min with two sprites per character.

The sprites learned in both settings are presented figure
8 and figure 9. We highlight in red the sprites learned with
the original architecture that are missing in the two sprites
setting. We also highlight in green groups of two sprites that rep-
resent two versions of the same character in the two sprites setting.

As expected, adding more sprites did not harm the sprites
learning since almost all the sprites learned in the original setting
are also learned when using two sprites per character, apart from
two sprites that represent very rare characters. Furthermore, using
two sprites per character enabled to capture variations in the
representation of characters, as highlighted in green. Several char-
acters (’c’, ’d’, ’e’, ’s’, ’t’) have two different versions encoded in

Figure 8: Sprites of the original LTW on Alto-word [18].

Figure 9: Learned sprites on Alto-word [18] when using two
sprites per character.

the sprites. It can either be caused by different representations of
the character like for the ’s and the ’d’, or by slight variations due
to different writing styles like the ’e’ or the ’t’. Most characters
only have one version represented, their second sprite not being
optimized. As a result, sprites that represent characters that have
two different representations do not need to capture all these
representations in one sprite by averaging them. This leads to
clearer sprites overall with less noise.

This improvement leads to better qualitative results but do not
have an impact on the quantitative evaluation: the CER on the
test set at the end of the training is close in the the two-sprites
setting (28.2%) and in the baseline (28.1%). This is expected as
the CER is influenced by the sequence of predicted sprites. As
long as a character is modelled in the sprites, even if it encodes
several versions, it may not prevent the model from using the right
sprite and therefore to predict the right sequence. The visual aspect
of the reconstruction will however be impacted since the sprite will
be noisy or will not represent the right version of the character.

4.3.2 Experiments with more transformations

We now evaluate the pipeline augmented with the Thin Plate
Spline transformation by training the baseline on Alto-word
and its subsets with specific handwritings. After convergence,
we train the models with the TPS transformation added to the
pipeline. We first visualize results on the subset Humanistique
that contains an highly irregular handwriting. Figures 10 and 11
illustrate the impact of the Thin Plate Spline transformation in
such context. The first line contains the original text line, the
second line contains the reconstruction and the third contains the
segmentation of the reconstruction.

6

Figure 10: Reconstruction
with the baseline pipeline.

Figure 11: Reconstruction us-
ing TPS transformation.

We observe on the second line that using the TPS transforma-
tions enables slight deformations on the sprites (for instance the
’u’) that enable to better match the instance of the character in the
input image. These deformations give an overall aspect that is less
rigid and imitate an handwritten style.

We further demonstrate the ability of the TPS transformation
to closely match the variability in the aspect of a character in the
figures 12 and 13. Figure 12 shows an example of two different
versions of a ’t’ in the same subset, Alto-word Humanistique. The
’t’ on the left is thicker and upright while the ’t’ on the left is
thinner and sloping.

Figure 12: Reconstruction with the baseline pipeline.

Figure 13: Reconstruction with the augmented pipeline using TPS
transformation.

We observe that with the baseline pipeline, a similar sprite
is composed in both samples to reconstruct the ’t’ (highlighted
in red in the segmentation) despite the difference of their aspect
in the original image cases. This is due to the the lack of
transformation in the pipeline that is able to take into account
this variability. However, when using the TPS transformation,
the thickness, the deformation and the slope are indeed adapted
to each sample (highlighted in green in the segmentation). The
sprites nevertheless become a bit noisier when adding the TPS
transformation which leads to small grains in the reconstruction.

Adding the TPS transformation to the pipeline also improves
the Character Error Rate , as shown in table 1. Training the model
with TPS after convergence of the baseline enables to improve the
Character Error Rate by around 3% on three subsets of Alto-word
(full dataset, Textualis, Humanistique). The Praegothica subset is
the only one where adding the TPS transformation hurts the CER.

Method Subset CER (%) Epochs
Baseline Full 28.1 200

TPS Full 25.9 200+200
Baseline Textualis 32.6 400

TPS Textualis 30.6 400+400
Baseline Praegothica 33.3 1200

TPS Praegothica 37.2 1200+1200
Baseline Humanistique 38.7 3600

TPS Humanistique 35.0 3600+3600

Table 1: Character Error Rate on the subsets of the Alto-word
dataset [18] (entire dataset denoted as Full).

4.4. Discussion

Limitations The main limitations in these experiments lie on the
use of additional transformations. It indeed leads to sprites that are
noisier which in turn impacts the quality of the reconstruction. It
is also difficult to quantify the impact of the additional transforma-
tions apart from visual aspect in the reconstructions. The curricu-
lum learning strategy is also hard to design and some parameters
such as the choice of the learning rate or number of epochs can
have an important impact on the results. Due to limited computa-
tional resources, we restrained ourselves to default values for the
optimizer and to a fixed number of epochs for both stages, but a
thorough investigation of those parameters might enable to signif-
icantly improve the results.

Future works Several other experiments can be done to further
illustrate the interest of using more than one sprite per charac-
ters. First, using more than two sprites per character could be easy
and interesting, although even on the challenging Alto-word, few
characters have more than two significantly different representa-
tions on the dataset. Training with one sprite per character then
using it as an initialization for a model that uses two sprites per
character with the two sprites initialized by the previously learned
sprite could also improve the results. It could indeed enable to
have couples of sprites that present slight variations, while in our
experiments only sprites that represented characters that have very
different representations had their two sprites optimized. Most
characters therefore had one sprite left non-optimized.

Adding more transformations to the transformation pipeline
could enable a better modelling of the variability in the hand-
writing. For instance, using the Morphological transformation in-
troduced in [12] could be interesting. Evaluating models trained
with TPS on subsets of Alto-word with specific handwritings on
a handwriting classification task and comparing it to the original
LTW could also enable to assess the capacity of the model to better
model the transformation that characterize a specific handwriting
when using the TPS transformation.

7

5. Conclusion

Through this project, we have improved the performances of
the model Learnable Typewriter on a challenging handwritten
dataset. The use of an augmented transformation pipeline and the
use of several sprites per characters proved through our evalua-
tion to better model the variability in the aspect of the characters
in such datasets. This could enable a better automatic analysis of
historical documents and spread the use of this model to paleogra-
phy applications, which was the purpose of this line of work.

References
[1] Théodore Bluche and Ronaldo Messina. Gated convolutional recur-

rent neural networks for multilingual handwriting recognition. In
2017 14th IAPR international conference on document analysis and
recognition (ICDAR), volume 1, pages 646–651. IEEE, 2017. 3

[2] Arthur Flor de Sousa Neto, Byron Leite Dantas Bezerra, Alejan-
dro Héctor Toselli, and Estanislau Baptista Lima. Htr-flor: a
deep learning system for offline handwritten text recognition. In
2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images
(SIBGRAPI), pages 54–61. IEEE, 2020. 3

[3] Sharon Fogel, Hadar Averbuch-Elor, Sarel Cohen, Shai Mazor, and
Roee Litman. ScrabbleGAN: Semi-Supervised Varying Length
Handwritten Text Generation. arXiv:2003.10557 [cs], Mar. 2020.
3

[4] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber. Connectionist temporal classification: Labelling un-
segmented sequence data with recurrent neural networks. In Pro-
ceedings of the 23rd International Conference on Machine Learn-
ing, ICML ’06, page 369–376, New York, NY, USA, 2006. Associ-
ation for Computing Machinery. 3, 4

[5] Alex Graves and Jürgen Schmidhuber. Offline handwriting recogni-
tion with multidimensional recurrent neural networks. Advances in
neural information processing systems, 21:545–552, 2008. 3

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–
778, 2016. 5

[7] Max Jaderberg, Karen Simonyan, and Andrew Zisserman. Spatial
Transformer Networks. In Advances in Neural Information Process-
ing Systems, volume 28, 2015. 3, 4

[8] Kevin Knight, Beata Megyesi, and Christiane Schaefer. The Copiale
Cipher. In Proceedings of the ACL Workshop on Building and Using
Comparable Corpora, pages 2–9, 2011. 1

[9] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson,
Richard E Howard, Wayne Hubbard, and Lawrence D Jackel. Back-
propagation applied to handwritten zip code recognition. Neural
computation, 1(4):541–551, 1989. 3

[10] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 3

[11] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regular-
ization. arXiv preprint arXiv:1711.05101, 2017. 5

[12] Tom Monnier, Thibault Groueix, and Mathieu Aubry. Deep
Transformation-Invariant Clustering. In NeurIPS, Oct. 2020. 3, 5, 7

[13] Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu Aubry. Un-
supervised Layered Image Decomposition into Object Prototypes.
In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 8640–8650, Apr. 2021. 1, 3

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. arXiv,
abs/1505.04597, 2015. 5

[15] Ioannis Siglidis, Nicolas Gonthier, Julien Gaubil, Tom Monnier, and
Mathieu Aubry. The learnable typewriter: A generative approach to
text line analysis. arXiv:2302.01660 [cs.CV], Jan. 2023. 1, 2, 3, 4,
5

[16] Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor Guizilini,
Alexei A. Efros, and Justin Solomon. MarioNette: Self-Supervised
Sprite Learning. arXiv:2104.14553 [cs], Apr. 2021. 1, 3

[17] Mohamed Ali Souibgui, Alicia Fornés, Yousri Kessentini, and Crina
Tudor. A Few-shot Learning Approach for Historical Ciphered
Manuscript Recognition. arXiv:2009.12577 [cs], Sept. 2020. 3

[18] Dominique Stutzmann. Dated and datable manuscripts: dataset,
Apr. 2022. 1, 2, 5, 6, 7

[19] Chuhan Zhang, Ankush Gupta, and Andrew Zisserman. Adap-
tive Text Recognition through Visual Matching. ECCV 2020, Sept.
2020. 3

8

Appendix

Figure 14: Sprites on Alto-word for baseline (left) and baseline
trained during 200 more epochs with TPS transformations (right).

9

Figure 15: Sprites on Humanistique subset of Alto-word for base-
line (left) and baseline trained during 3200 more epochs with TPS
transformations (right).

10

Figure 16: Sprites on Praegothica subset of Alto-word for base-
line (left) and baseline trained during 1600 more epochs with TPS
transformations (right).

11

Figure 17: Sprites on Textualis subset of Alto-word for baseline
(left) and baseline trained during 400 more epochs with TPS trans-
formations (right).

12

