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Introduction

In this project we study recent approaches of Self-Supervised
Learning of Visual Representations with a focus on two recent
ones, SimCLR [2] and VICReg [1]. After briefly reviewing the
literature and describing these two approaches more thoroughly,
we conduct experiments on VICReg to investigate its properties.

1. Related work

1.1. Self-Supervised Learning (SSL) of Visual Represen-
tations & Collapse

Self-supervised Learning of Visual Representations. These
approaches consist in designing a task called proxy task for which
a supervision is available while on a dataset without labels. Train-
ing for this task must enable to learn meaningful representations.
First examples of proxy tasks designed were mostly geometric, for
instance recovering the position of a patch relative to another [5]
or predicting the degree of rotation applied to an image [6].

Recent approaches enabled rapid progress of SSL of Visual
Representations, closing the gap with supervised approaches.
Among these approaches are Contrastive Learning methods that
aim at learning representations that are close for similar images
and far away for dissimilar images. Such methods often rely
on a contrastive loss [11] that ensures this behaviour and a two-
branches architecture, sometimes siamese [3]. Another class of
recent approaches is formed by Information Maximization meth-
ods that aim at maximizing the information encoded in the learned
embedding space [7].

Collapse. A recurrent problem in Self-Supervised Representa-
tion Learning is the collapse of the representations in which the
model outputs a constant representation, ignoring the input. Some
solutions exist, for instance the use a momentum encoder and a
memory bank [8] along with stop-gradient operations. The under-
lying reasons for the success of the existing techniques to prevent
collapse are nevertheless not yet clearly understood.

1.2. SimCLR & VICReg

SimCLR. SimCLR [2] is a contrastive learning framework for
SSL of visual representations. The main contribution of the au-
thors lies in a thorough study of the components that enable good
performances. They conclude to the usefulness of composing data
augmentations (random cropping + color distorsion), as well as
the interest of not applying directly the contrastive loss in the em-
bedding space. They argue that projecting the representations with
a non-linear function (MLP) enables to maintain information that
would otherwise be lost due to the invariance to transformations
(rotation, color...).

It leads to a simple framework, represented Figure 1 that does
not require a memory bank.

Figure 1. Model architecture used for SimCLR and VICReg. Source [1]

The framework can be divided into three steps. First, two dif-
ferent data augmentations t and t′ are applied to a given image,
yielding two augmented images called a positive pair. Then, a
shared neural network encoder (fθ = f ′

θ′ in Figure 1), such as
a ResNet [9], encodes representation vectors from the augmented
images. Finally, a small neural network projects the two represen-
tation vectors to a smaller vector space where the contrastive loss
(1) is applied on the two branches Z and Z ′.

For a batch of N examples, among the 2N examples de-
rived from data augmentation, given a positive pair, the other
2(N −1) augmented images are treated as negative examples. Let
sim(u, v) = uT v

∥u∥∥v∥ be the cosine similarity. The contrastive loss
for a positive pair (i, j) is then defined as:

li,j = −log

(
exp(sim(zi, zj)/τ∑2N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)

)
(1)

where τ is a temperature parameter. This loss aims at embedding
the representation vectors of the positive pair close to each other
while moving them away from the embeddings of the other images
in the batch.

As the contrastive prediction task is defined at the batch level,
the batch size is a crucial parameter for training the model. The
authors show quantitatively that the bigger the batch size is, the
better the performances are. This can be explained by the fact that
bigger batch sizes allow to have more negative examples within
the same batch, thus to get better separated representation vectors.

VICReg. VICReg [1] is an information maximization method
that aims at explicitly prevent collapse. It uses a simple two-
branches architecture (cf fig. 1) for learning visual representations
in a self-supervised way, and doesn’t rely on limiting techniques
such as memory banks or large batch sizes. Its main contribution
is the introduction of a loss composed of three regularization
terms that explicitly prevent collapse.

The loss is defined on a batch of 2n projected representations
(zi, z

′
i)1≤i≤n ∈ Rd. The first term s is an invariance term that is

applied to both branches Z,Z ′ and simply consists in a MSE loss.
The two other terms are applied separately on each branch. The
covariance regularization term c aims at decorrelating the dimen-
sions of the learned embedding space so that it encodes different
information. To do so, it regularizes the off-diagonal coefficients
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of the covariance matrix C computed over the n representations of
the branch.

The variance regularization term v explicitly prevents collapse
by ensuring that the variance over the batch of each component
of the representations is superior to a fixed threshold γ. This en-
sures that the model doesn’t output a constant representation. It is
defined as the hinge loss applied to the s.t.d. of the components
zk ∈ Rn of the representations over the branch Z:

Invariance term: s(Z,Z ′) =
1

n

n∑
i=1

∥zi − z′i∥22

Covariance term: c(Z) =

n∑
i,j=1,i̸=j

[C(Z)]i,j
2

Variance term: v(Z) =
1

d

d∑
k=1

max

(
0, γ −

√
V ar(zk) + ϵ)

)
where ϵ is a small numerical stability factor. The final loss l is a
combination of the three terms, the two latter being applied sym-
metrically to both branches:

l = λ s(Z,Z ′) + ν (c(Z) + c(Z ′)) + µ (v(Z) + v(Z ′)) (2)

The main advantage of VICReg lies in application of the last
two terms of the loss separately to are applied separately to each
branch while explicitly preventing collapse. This indeed enables to
use separate architectures for encoders fθ and fθ′ , or even different
modalities as input. It paves the way to its use in a wide variety of
tasks.

Another advantage of VICReg is that it doesn’t require tech-
niques such as memory banks or large batch sizes that have heavy
memory footprints. Authors indeed show the stability of the re-
sults for a wide range of batch sizes while memory banks are not
useful, negative samples being replaced by the variance term.

2. Experiments
2.1. Experimental setup & Datasets

Experimental setup. We conduct experiments by training en-
coders with VICReg, using the code from the official VICReg
codebase 1. We also use pre-trained weights on ImageNet-1000
available in the codebase, in which case it will be specified.

We evaluate the backbones (i.e. everything excepted the pro-
jection heads) on classification tasks. To do so, we perform linear
evaluation by training a linear classification layer on top of the
frozen trained backbones.

As for the architecture, we use ResNet-50 [9] as a shared back-
bone for both branches and a 1-hidden layer MLP (with Batch
Normalization and ReLu activation for the two first layers) as the
projection head. Following the experiments in VICReg [1], the
size of each layer of the projection head is fixed to 8192. The train-
ing protocol is the same as the one described in the paper. Unless
specified, we use the same data augmentation pipeline that sequen-
tially performs Random Cropping then resizing to size 224× 224,

1https://github.com/facebookresearch/vicreg

then randomly applied Horizontal flipping, color jitter, converting
to grayscale, Gaussian blurring, solarization and normalization.
Following the ablations of the original paper, we set the coefficient
of the invariance term to λ = 25, the coefficient of the covariance
term to ν = 1 and the coefficient of the variance term to µ = 25.

We train and evaluate our models on four Nvidia V100 GPUs,
and always train the linear classifier for 100 epochs with a batch
size of 256 on 10% of the training set during each evaluation.

Datasets. We first conduct experiments on ImageNet-100 that is
a subset of the classification dataset ImageNet-1000 [4]. We use
the version available on Kaggle that consists in 10% of the original
dataset with 100 random classes and 135000 color images.

We then evaluate the generalization power of a backbone
trained with VICReg on other datasets, namely CIFAR-10 and
CIFAR-100 [10]. These classification datasets are composed of
60000 32 × 32 color images divided respectively in 10 and 100
classes.

We finally evaluate the quality of the representations learned
with VICReg when training on a fine-grained dataset that is CUB-
200-2011 [13]. It consists in 11788 color images divided in 200
bird categories.

2.2. Experiments on a smaller dataset (Julien)

We first evaluate the capacity of a model trained with VICReg
to learn meaningful representations from fewer data. We train each
model during 1000 epochs on ImageNet-100, except a pre-trained
model on ImageNet-1000 that we borrow from the codebase of
VICReg for comparison. We reproduce several experiments from
the paper by varying the batch size and verifying the influence of
the variance term. Results are presented table 1:

Model Top-1 Acc Top-5 Acc
BS=256 75.4 93.2
BS=512 75.9 92.9

BS=1024 76.6 93.4
µ = 0 1.0 5.0

ImageNet-1000 81.2 96.0
Table 1. Top-1 and Top-5 accuracies (in %) on Imagenet100 test set

Our experiments show the same stability with respect to the
batch size as presented in the original paper, the maximal dif-
ference between the three experiments in Top-1 and Top-5 accu-
racy respectively being of 1.2 and 0.5%. This shows that VICReg
indeed performs well with reduced batch sizes even on smaller
datasets. Still, the model pre-trained on ImageNet-1000 with a
batch size of 2048 yields the best results by a significant margin,
around 5% in Top-1 accuracy and around 2.5% in Top-5 accuracy.
This suggests that the model benefits from being trained on larger
datasets to learn better representations, even though most of the
classes that appear in ImageNet-1000 are not in ImageNet-100.

We then verify that the variance regularization term indeed pre-
vents collapse by removing it, setting its coefficient µ to 0. The
classification results indeed suggest that the model outputs a con-
stant representation and the classifier selects the same class every
time. We verify this by performing visualizations using t-SNE al-
gorithm [12] on representations encoded on the test set. For clarity

2

https://github.com/facebookresearch/vicreg


purposes, we restrict ourselves to 5 classes randomly selected, the
results are presented in Figure 2:

Figure 2. t-SNE visualizations on ImageNet-100 test set for VICReg mod-
els: BS=1024 (left), ImageNet-1000 (center) and µ = 0 (right)

The visualization clearly demonstrates that removing the vari-
ance regularization term in Equation 2 leads to collapse. The vi-
sualization for the model pre-trained on ImageNet-1000 shows
clusters that are more distinct compared to the model trained on
ImageNet-100. This indicates that the representation for the model
trained on ImageNet-1000 are both more dissimilar from the rep-
resentations of images of different classes and closer to the rep-
resentations of images of the same class. This suggests that the
model trained on ImageNet-1000 captures more discriminative
features for every class, leading to a better representation (espe-
cially for a classification downstream task).

2.3. Generalization evaluation (Manh-Dan & Julien)

In order to assess the generalization power of the representa-
tions produced by VICReg, we evaluate the model pretrained on
ImageNet-1k (available in the codebase, denoted as ImageNet-1k
frozen) on CIFAR-10 and CIFAR-100 datasets. We compare it to a
model trained from scratch on these datasets with random weights
initialization (the baseline in Tables 2 and 3) and another one fine-
tuned on these datasets. We train models for 1000 epochs with a
batch size of 256 on CIFAR.

Dataset Pretrain Top-1 Acc Top-5 Acc
Baseline 73.6 98.6

ImageNet-1k frozen 90.4 99.8
ImageNet-1k init 87.4 99.7

Table 2. Top-1 and Top-5 accuracies (in %) on CIFAR-10 test set

Dataset Pretrain Top-1 Acc Top-5 Acc
Baseline 52.6 80.3

ImageNet-1k frozen 73.6 93.6
ImageNet-1k init 67.9 90.9

Table 3. Top-1 and Top-5 accuracies (in %) on CIFAR-100 test set

For both datasets, the results show that the model pretrained
on ImageNet-1k outperforms the finetuned model and the model
trained from scratch. Different factors can explain the better per-
formances of the model pretrained on ImageNet-1k. First of all,

the average resolution of images from ImageNet is 469 × 387
whereas images from CIFAR have a resolution of 32 × 32 pix-
els. Thus, higher quality images may lead to higher quality fea-
tures resulting in better classification accuracy. ImageNet-1k con-
tains approximately 25 times more images than CIFAR, which has
been observed to be useful in most unsupervised or self-supervised
methods, in order to guide the training without labels.

A result that might be surprising is the fact that the model fine-
tuned on CIFAR performs worse than the model only pretrained
on ImageNet-1k. This may be due to the fact that finetuning on
CIFAR does not compensate enough the deterioration of the qual-
ity of the features as explained in the previous paragraph. Indeed,
as both ImageNet and CIFAR consist of natural images, their do-
mains are similar and thus finetuning is not as beneficial as it
would be with more different domains (such as medical imaging).

2.4. Fine-grained dataset (Julien)

We finally evaluate the capacity of a model trained with VI-
CReg to learn meaningful representations when training on chal-
lenging fine-grained datasets. We train each model during 2000
epochs on CUB-200-2011 using a batch size of 1024, except
for the model pretrained on ImageNet-1000 (denoted as VICReg-
ImageNet-1000 frozen) that we borrow from the codebase of VI-
CReg for comparison.

We investigate the influence of the scale of the crops performed.
It is indeed the most important factor on CUB-200-2011 where
images are not cropped and centered on the birds. We vary the
lower bound of the crop scale from 0.08 (default) to 0.7, table 4:

Model Top-1 Acc Top-5 Acc
Crop Scale (0.08-1) 4.4 11.8
Crop scale (0.3-1) 8.1 18.7
Crop scale (0.5-1) 6.5 17.1
Crop scale (0.7-1) 7.6 18.9

Table 4. Top-1 and Top-5 accuracies (in %) on CUB-200-2011 test set

We first note that all the models trained from scratch on
CUB-200-2011 don’t perform well compared to the previous ex-
periments. This is expected since CUB is much more challenging
than than ImageNet, images from different bird categories being
very similar. The default crop scale (0.08-1) probably leads to
bad results because birds often take up a small located area on
the image. A small crop may therefore completely miss the bird.
There is nevertheless no clear relationship between the accuracy
and the lower bound for the scale. In our next experiments,
we keep the default scale (0.08-1) for fair comparison with the
models pre-trained on ImageNet-1000 available in the codebase.

We then investigate how small variations in the transformation
pipeline for data augmentations affect the results compared to the
baseline (Crop Scale 0.08-1). We also compare with a model pre-
trained on ImageNet-1000 from the code base (ImageNet-1000
frozen), and a model whose weights have been initialized with
ImageNet-1000 frozen and trained on CUB (ImageNet-1000 init).
The results are presented table 5:

The different transformations tested here did not enable to im-
prove the baseline score. As previously, the model pre-trained
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Model Top-1 Acc Top-5 Acc
Crop Scale (0.08-1) 4.4 11.8

W/o Color Jitter 2.6 8.4
W/o Gaussian Blur 2.4 8.9

Only Crop 2.4 8.3
Random ResNet 0.8 3.0

ImageNet-1000 init 17.5 39.5
ImageNet-1000 frozen 20.9 42.4

Table 5. Top-1 and Top-5 accuracies (in %) on CUB-200-2011 test set

on ImageNet-1000 outperforms the other models by a significant
margin and still yields better results than the model fine-tuned on
CUB-200-2011. This can be explained by the fact that CUB and
ImageNet-1000 datasets could possibly overlap.

We then seek to exhibit differences in the training process be-
tween the trainings on CUB and ImageNet-100 that could explain
the success of the latter. To do so, we track the evolution of the
different terms of the VICReg loss (Eq.(2)) during the training.
We observe a significant difference for only one of the terms that
is the Covariance term. The results are presented in Figure 3.

Figure 3. Evolution of the Covariance term in VICReg loss 2 during train-
ing on ImageNet-100 and CUB-200-2011

We first note that the Covariance term is the only that is consis-
tently increasing on the training set during training, despite being a
regularization term. Our interpretation is that the model learns fea-
tures that are more and more accurate and specific to the training
set during the process, structuring the learned embedding space in
the same time. This structure and the relation between discrimi-
native features may lead to redundant information being encoded
in different dimensions, hence increasing the covariance term. Al-
though the purpose of the covariance term is explicitly to avoid
this behaviour while learning meaningful representations, this be-
haviour may therefore also be an indicator of a training process
that learns to encode relevant representations.

The main difference between the two experiments lies in the the
behaviour on the validation set: the covariance term on the valida-
tion term on CUB starts decreasing long before on ImageNet-100.
This results in a relative difference between the covariance term
on the validation and training set that is much higher on CUB than
ImageNet (around 60% for CUB, 20% for ImageNet-100). This
difference could be an indicator that the model doesn’t learn to

encode relevant representations on CUB.
We finally provide a visualization that highlights the lack of

structure in the learned embedding space on CUB by performing
visualizations using t-SNE algorithm on representations encoded
on the test set (only 5 classes as previously), Figure 4:

Figure 4. t-SNE visualizations on CUB-200-2011 test set for VICReg
models: BS=1024 (left), ImageNet-1000 frozen (center) and a randomly
initialized model not trained (right)

This visualization shows that none of the models have learnt to
encode representations on CUB that are clearly distinct for differ-
ent classes, therefore leading to bad results in classification. For
some classes, identifiable clusters appear on the visualization for
the model trained on ImageNet-1000 which is consistent with its
results in classification evaluation, that are significantly better than
the others.

Conclusion

In this work, we perform many experiments on VICReg [1]
to highlight some of its properties. We showed that VICReg is
still able to produce meaningful representations with few data.
We also verified the authors claims about the role variance term
used in their proposed loss (Eq.(2)) as well as its robustness to
the batch size used during training. We also assessed the general-
ization power of VICReg by showing that the model pretrained
on ImageNet-1k outperformed on CIFAR models trained from
scratch or finetuned on this dataset. Finally, we showed that VI-
CReg does not perform well on fine-grained classification task be-
cause of images being too similar which translates in too similar
representations, as proven by the covariance term evolution.
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